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Outline
Introduction:

• The problem: how to see quarks from hadrons

• QCD calculations: always an all orders problem

• Quarks as jets

Fixed order calculations:

• Tree level matrix elements: automatic generators

• How to define a jet cross section using a tree level ME

Shower Monte Carlo

• Basics

• Merging Multi-parton matrix elements and showers

• CKKW approach
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Calculations at Next-to-Leading orders

• Calculation of complex processes: status

• Problems with NLO calculations

• Merging NLO and showers

• MC@NLO and POWHEG.
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Quarks from hadrons

Discovery physics focussed upon stable elementary objects, such as photons,

leptons, gluons and quarks.

Ideally, we would need leptons and quarks colliders, and experiments that
detect photons, leptons, gluons and quarks. For photons and leptons, this is
almost the case. For gluons and quarks quarks, things are much more difficult;

tt̄ production: incoming protons can be seen as broad-band beams of coloured
particles. Final state quarks manifest themselves as hadron jets.
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QCD calculations: all orders always needed
Even in the most elementary QCD process we always have contributions of
arbitrarily high order coming in. Low angle splitting processe of final state
quarks and gluons yield contributions of order 1

Splitting processes contributes as

≈
∫

αs(t)
dt

t
≈αs log Q2≈ 1

An elementary diagram containing final state quarks and gluons should be
interpreted as an inclusive process, where final state quarks and gluons undergo
an arbitrary number of splitting processes.

So: when talking about a tree level process in QCD, always keep in mind that
it is an inclusive process. The divergences in the sum of real splitting processes
and virtual corrections cancel because of the Kinoshita-Lee-Nauenberg mecha-
nism. Quarks evolve into multiparticle systems (jets) in the final state.
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Tree level processes for LHC
Even the “simple” graph for tt̄ production at hadron colliders is not so easy to
compute, if all angular correlations of decay products are taken into account.
Background to (semileptonic) tt̄ production: W + 4 j, very difficult!
Discovery example: gluino production

If χ = χ0: MET+4 jets;
if χ = χ±→W±+ χ0:
MET+ up to 8 jets;

W + jets,
Z + jets (Z→ νν̄),
tt̄ + jets

are all backgrounds;

Can we compute such complicated processes, even at the tree level?
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Calculation of Complex Processes: LO (tree Level) Matrix Elements

Many available programs can do automatic evaluation of LO cross sections.

1. Helicity amplitudes (HELAS, Hagiwara, Kanzaki, Murayama, Watanabe;
MadGraph, Maltoni, Stelzer)

2. Behrends-Giele recursion relations (VecBos)

3. other recursive methods, (ALPHA, Caravaglios, M.Moretti)

− ALPGEN, Mangano, Moretti, Piccinini, Pittau, Polosa

− HELAC, Kanaki, Papadopoulos

4. CSW recursion (from twistors), Cachazo, Svrček, Witten,2004,
Dixon, Glover, Khoze, Badger, Bern, Forde, Kosower, Mastrolia

5. BCFW recursion, Britto, Cachazo, Feng, Witten,2004
+masses: Badger, Glover, Khoze, Svrček; Schwinn, Weinzierl
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Comparison of algorithms

CSW and BCF yield more compact expressions.

Comparison of automated algorithms by

Duhr, Hoche, F.Maltoni, Jun.06; also Dinsdale, Ternick, Weinzierl, Feb.06;

BG=Berends-Giele, CSW=Cachazo-Svrček-Witten, BCF=Britto-Cachazo-Feng

CO=Colour ordered, CD=Colour dressed (i.e. full amplitude)

Final state BG BCF CSW

CO CD CO CD CO CD

2g 0.24 0.28 0.28 0.33 0.31 0.26
3g 0.45 0.48 0.42 0.51 0.57 0.55

4g 1.20 1.04 0.84 1.32 1.63 1.75

5g 3.78 2.69 2.59 7.26 5.95 5.96
6g 14.20 7.19 11.9 59.10 27.80 30.60

7g 58.50 23.70 73.6 646.00 146.00 195.00

8g 276.00 82.10 597 8690.00 919.00 1890.00
9g 1450.00 270.00 5900 127000.00 6310.00 29700.00

10g 7960.00 864.00 64000 48900.00

Berends-Giele (comparable to ALPGEN, HELAC) still faster ...
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summarizing (LO):

• General purpose ME generators for SM and MSSM tree level
processes are available (example: Madgraph, any process, not very fast)

• Very fast generators, capable to add several gluons in the final state
already available. Example: ALPGEN, processes added by authors

WQQ̄ + up to 4 jets QQ̄ H + up to 4 jets

Z/γ + QQ̄ + up to 4 jets Inclusive N jets, with N up to 6
W + up to 6 jets Nγ + M jets
W + c + up to 5 jets Single top
Z + up to 6 jets W + photons + jets

nW + m Z + kH + lγ + up to 3 jets WQQ̄ + photons + jet

QQ̄ + up to 6 jets QQ̄ + M -photons + N -jets

QQ̄ + Q′Q̄ ′ + up to 4 jets Higgs + up to 5 jets

Total automation of fast techniques desirable (not far)
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Play with MadGraph
The ‘‘not so fast” methods are still much faster than computing feynman
graphs in the traditional way.
They are based upon a very simple idea: compute amplitudes (not squared
amplitudes), with a purely numerical implementation the Feynman rules.
Thus: for a final state fermion, build up a helicity complex spinor.
For a final state vector, build the complex polarization vector ǫ±,0

µ .

To compute a tree graph, we only need to be able to compute the merging of
these objects: two four component spinors merging into a four component
vector, a spinor and a vector merging into a spinor, and so on.

This method allows to compute cross sections like W+ up to 4 partons
(compare it to Alpgen: W + up to 6 partons!!).

Visit the MadGraph web site: http://madgraph.hep.uiuc.edu/
and get the code for simple processes to see how it works!
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Problems with tree level calculations
Look for example at W + j. A matrix element process that gives rise to it is
u d̄ → W+ + g. But this process should be seen as an inclusive one (the final
state gluon can undergo several splitting processes at small angle).

Consider now u d̄→W+ + 2g. How is it distinguished from W + g?

We should ask that the two gluons are sufficiently far apart that they do not
constitute a single jet. For example, we may require that the invariant mass
M12 (or an equivalent measure) of the two-gluon system is above a given cut.

Also an initial state quark may have originated from an initial quark splitting
into a quark and gluon. This yields corrections of order 1 when the gluon is
nearly parallel to the incoming line. Thus, we should also ask that the gluon
has transverse momentum above a given cut.
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Matrix element samples of events with 1, 2, 3 or more partons in the final
state are build by requiring a pT > M , and Mij > M .

Remember: W + nj cross section in this sample also represents events where
more than n partons were produced, either with pT < M or with Mij < M for
some parton pairs.

M should be large enough for perturbation theory to hold, i.e. αs(M) should

be small. But this is not enough. corrections go like log
Q

M
αs(M)!
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Look for example at e+e−→ q q̄ . We know that

σ(e+e−→Hadrons)= σ0(e+e−→ q q̄) +O(αs(Q)).

This is because radiation of final state lines, giving corrections of order

αs

∫

Λ

Q dt

t
≈αs log

Q

Λ
≈ 1

cancel agains corresponding virtual corrections V

V + αs

∫

Λ

Q dt

t
≈αs≪ 1, so V ≈−αs

∫

Λ

Q dt

t

But if we limit the real radiation to t < M , we get

V + αs

∫

Λ

M dt

t
=−αs

∫

M

Q dt

t
≈−αs log

Q

M

(A more precise analysis would show that in fact it is log2 rather than log)
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So: log
Q

M
αs(M) should be small for the ME approach to work, and M cannot

be to far below the scale Q of the process in question.

Clearly unsatisfactory: we can have log
Q

M
αs(M)≈ 1 even with M ≫Λ!

Is it possible to give a more exclusive description, bringing M closer to the
GeV limit?

The answer is yes, in the framework of shower algorithms.
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Shower basics: Collinear factorization

QCD emissions are enhanced near the collinear limit

Cross sections
factorize near
collinear limit

|Mn+1|2dΦn+1� |Mn|2dΦn
αs

2π

dt

t
Pq,qg(z)dz

dφ

2π

t : hardness (either virtuality or pT
2 orE2θ2 etc.)

z = k0/(k0 + l0) : energy (or p‖, or p+) fraction of quark

Pq,qg(z) = CF
1 + z2

1− z
: Altarelli−Parisi splitting function

(ignore z→ 1 IR divergence for now)
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If another gluon becomes collinear, iterate the previous formula:

θ ′, θ→ 0
with θ ′> θ

|Mn+1|2dΦn+1� |Mn−1|2dΦn−1× αs

2π

dt′

t′
Pq,qg(z

′)dz′ dφ′

2π
× αs

2π

dt

t
Pq,qg(z)dz

dφ

2π
θ(t′− t)

Collinear partons can be described by a factorized integral ordered in t.

For m collinear emissions:

(

αs

2π

)m
∫

θm in

dθ1

θ1

∫

θ1

dθ2

θ2
	 ∫

θm−1

dθm

θm
∝

logm 1

θm in
2

m!
≈

(

αs

2π

)m logmQ2

Λ2

m!

where we have taken θmin ≈Λ/Q; (Leading Logs) This is of order 1!

Typical dominant configuration at very high Q2
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Besides q→ qg, also g→ gg,
g→ qq̄ come into play.

Typical configurations: intermediate
angles of order of geometric average
of upstream and downstream angles.

Each angle is O(αs) smaller than its
upstream angle, and O(αs) bigger
than its downstream angle.

As relative momenta become smaller
αs becomes bigger, and this picture
breaks down.
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For a consistent description:
include virtual corrections to same LL approximation

One can show that the effect of virtual corrections is given by

• Let α(µ)� α(t) in each vertex, where t is the hardness of the
vertex (i.e. hardness of the incoming line)

• For each intermediate line include the factor

∆i(th, tl)= exp



 −
∑

(jk)

∫

tl

th dt′

t′

∫

dz
αs(t′)

2π
Pi,jk(z)





where th is the hardness of the vertex originating the line, and tl is the
hardness of the vertex where the line ends.
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Sudakov form factor

∆i(th, tl) = exp



 −
∑

(jk)

∫

tl

th dt′

t′

∫

dz
αs(t′)

2π
Pi,jk(z)





As tl becomes small the exponent tend to diverge, and ∆i(th, tl) approaches 0.
In fact, because of αs(t), we must stop at t0 & ΛQCD.
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Final Recipe

• Consider all tree graphs.

• Assign ordered hardness parameters t to each vertex.

• Include a factor
αs(t)

2π
Pi,jk(z)

dt

t
dz

dφ

2π
at each vertex i→ jk.

• Include a factor ∆i(t1, t2) to each internal line with a parton i, from
hardness t1 to hardness t2.

• Include a factor ∆i(t, t0) on final lines (t0: IR cutoff)
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Most important: the shower recipe can be easily
implemented as a computer code!

Shower Algorithm:

• Generate a uniform random number 0 < r < 1;

• Solve the equation ∆i(t, t
′) = r for t′;

• If t′< t0 stop here (final state line);

• generate z, jk with probability Pi,jk(z), and 0 < φ < 2π uniformly;

• restart from each branch, with hardness parameter t′.
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Probabilistic intepretation: branching probability of line of flavor i

dP (t1, t)= exp



 −
∑

(jk)

∫

t

t1 dt′

t′

∫

dz
αs(t

′)

2π
Pi,jk(z)



�
∆(t1,t)

αs(t)

2π
Pi,jk(z)

dt

t
dz

dφ

2π

break up t1, t into small subintervals:

dP (t1, t) =











∏

m









1−
∑

(jk)

δt

tm

∫

dz
αs(tm)

2π
Pi,jk(z)�

No em ission prob . in tm,tm+δt



















αs(t)

2π
Pi,jk(z)

δt

t
dz

dφ

2π�
em ission prob . in t,t+δt

So: the probability for the first branching at hardness t is the product of the
non-emission probability ∆(t1, t) in all hardness intervals between t1 and t,
times the emission probability at hardness t.
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(more or less) obvious consequences:

• The total branching probability plus the no-branching probability is 1;

mathematically

∫

t0

t1

dP (t1, t
′)=

∫

t0

t1

d∆i(t1, t
′) = 1−∆i(t1, t0)

• The Sudakov form factor ∆i(t1, t) is the no-branching probability

from scale t1 down to the scale t.

• The branching probability is independent of what happens next

(because the total probability of what happens next is 1).

This property is often called unitarity of the shower. It is a consequence of the

Kinoshita-Lee-Nauenberg theorem: collinear divergence must cancel in the

inclusive cross section.
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COLOUR AND HADRONIZATION

SMC’s assign colour labels to partons.

Only colour connections are recorded (as in large N limit).

Initial colour assigned according to hard cross section.

Colour assignements are used in the hadronization model.

Most popular models: Lund String Model, Cluster Model.

In all models, color singlect structures are formed out of colour connected par-
tons, and are decayed into hadrons preserving energy and momentum.
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Large angle emission

A disturbing feature of SMC’s: the hardest jet generated in the shower is not
really collinear in about 10% of the events (i.e. O(αs)). Thus, the gross fea-
ture of the event is wrongly described by the SMC in 10% of the cases.

So: the Shower algorithm describes well small angle radiation, but fail for the
small fraction of large angle emission events.

This small fraction is precisely what is relevant for QCD background to new
physics processes.

For example, in g̃g̃ production with g̃ → (q̃ → qχ) q, the quark system has
large invariant mass, and the small pT region is not priviledged.

Thus, although showers describe well the bulk of events, they fail for the most
important ones from the point of view of backgrounds to new physics.
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Multi-parton Matrix Elements
With LHC physics: cannot trust collinear approximation for multi-jet

background to complex processes
The use of exact ME is mandatory (Gianotti,Mangano, 05)

Meff distribution for a potential
multijet+ET

miss SUSY signal
dark circles: signal
Shaded area: MC background

27



Can we MERGE matrix element calculations with parton shower algorithms,
to get the best of both world?

This has been a long-standing problem; a consistent solution has been
formulated by Catani, Krauss, Kuhn and Webber in 2001.
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Historical approach: CKKW
Catani, Krauss, Küen, Webber (2001), (in e+e− annihilation).

In a nut-shell:

• Correct ME calculations when they approach the collinear region, so
that they reproduce Shower results

• Let the Shower take care of radiation with M < Mcut
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In a better approximation

• Build a sample of ME events, generated with a probability proportional
to the corresponding cross section. At this stage, use a fixed reference
value of the strong coupling αs(M). Events are generated with a cut
M on the t of parton pairs, and on the pT of each parton.

• Clusterize ME partons to reconstruct a shower skeleton
(by pairing up particles that yield smallest t recursively)

Red blobs have
decreasing t values

You can think of t as the virtuality of the pair, but other definitions
are possible.
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• Evaluate ME couplings αs(t) at scales t of vertices in shower skeleton

• Assign Sudakov form factors ∆(t, t′) to the skeleton intermediate lines
(as in Shower MC)

• Reject the event with a probability
∏ αs(t)

αs(M)

∏

∆(t, t′)

• Pass the event to a shower Monte Carlo, with the instruction to shower
each final state line, with shower initial condition equal to M .

Events generated in this way reduce to what a shower MC would do for small
angles. Furthermore, the procedure should have only small M dependence. By
moving M , the amount of job performed by the ME and by the shower
changes, but this should not make much difference if M is small enough.

This is not yet the full content of the CKKW algorithm. The really difficult
part has to do with the handling of soft-collinear radiation.
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CKKW: details
CKKW relies upon the theory of soft-collinear radiation in QCD, through
the following steps:

A) Theory of multiple emissions in the soft collinear regions
(Mueller, 1981; Ermolaev and Fadin, 1981; Bassetto, Ciafaloni,
Marchesini, etc.)

B) kT -cluster multiplicity calculable at the NLL level in framework A)
(Catani, Dokshitzer, Olsson, Turnock and Webber, 1991)

C) kT -cluster cross section is improved with Sudakov form factors and
running αs (i.e. dominant virtual corrections) from step B)

D) Completion of the algorithm with subsequent angular ordered shower in
collinear and soft approximation
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Soft divergences and double log region

z→ 1 (z→ 0) region problematic: for z→ 1: Pqq, Pgg ∝ 1

1− z

Choice of hardness variable makes a difference

virtuality: t ≡ E2z(1− z) θ2/2
�1−cos θ

pT
2 : t ≡ E2z2(1− z)2 θ2

angle: t ≡ E2 θ2

Notice, from the figure, for small pT : θ≈ pT

zE
+

pT

(1− z)E
=

pT

z(1− z)E

∫

dt

t

∫

0

1− t
√

/E dz

1− z�
v irtua lity : 1−z>t/E2

≈
log2 t

E2

4
;

∫

dt

t

∫

0

1−t/E2
dz

1− z�
pT
2 :(1−z)2>t/E2

≈
log2 t

E2

2
;

∫

dt

t

∫

0

1 dz

1− z�
ang le

≈ log t log Λ

Sizeable difference in double log structure!
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At double log level:
angular ordering is the correct choice (Mueller 1981)

dθ

θ

αs(pT
2 )

2π
P (z)dz

θ1 > θ2 > θ3	
pT
2 = E2z2(1− z)2 θ2

αs(pT) for a correct treatment of charge renormalization in soft region.

∆i(t, t′)= exp



 −
∫

t′

t dt

t

∫

t0
t

√

1− t0
t

√

dz
αs(pT)

2π

∑

(jk)

Pi,jk(z)





≈ exp



 − ci

4πb0

{

log
t

Λ2
log

log
t

Λ2

log
t0

Λ2

− log
t

t0

}

t′

t


 (cq = CF , cg = 2CA)

Sudakov damping stronger than any power of t.
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With virtuality ordering:
Soft emissions give small virtuality.
At end of shower, large amount of
unrestricted (all angles) soft radiation

But soft gluons emitted at large angles from final state partons add coherently!

large angle, high energy: already ordered in angle
large angle, small energy: should be reordered by angle;

Thus: order in angle
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Look at the example:

Angular ordering accounts

for soft gluon interference.

Intensity for photon jets = 0

Intensity for gluon jets = CA

instead of 2CF + CA

Consistent with a boosted jet pair, in the case of a photon jet.
In angular ordered SMC large angle soft emission is generated first.
Hardest emission (i.e. highest pt) happens later.
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Angular ordering is a non-trivial result; look at double emission

p

k2 k1

p

k1
k2

p

k1

k2

A

B

C

Largest angle gluon k2 can be
inserted in 3 ways;

(k2 + p)2 > (k1 + p)2:
only A contributes;
(k2 + p)2 < (k1 + p)2:
B+C contribute

In the last cases B and C add
coherently: total as if k2 was
emitted in A, neglecting the
virtuality of the incoming line.
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Angular ordering found by Mueller in a 3-loop calculation of soft emissions

The theory of multiple soft emission has been extended from double log accu-
racy (i.e. only small angle) to large angle emissions. In the large N limit
(only planar graphs) this formulation acquires the particularly simple form
of an energy ordered dipole cascade.

Normally in soft gluon (and photon) physics, one uses the fact that the inser-
tion of the softest gluon is IR divergent only if it is attatched to external lines.
This is not the case if you have collinear singularities! (see previous slide)
Dipole cascade is also non-trivial ...
(Fiorani, Marchesini, Reina, 1988)
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Is coherence important?

• Eccessive multiplicity growth in virtuality ordered MC
(“historical” problem with multiplicity when LEP was turned on)

• Angular ordered MC’s (HERWIG) agree with mutliplicity data
in e+e− annihilation

• Agreement of PYTHIA with multiplicity data was achieved by
superimposing an angular ordered veto over the virtuality ordered
shower. This amounts to take the interference as being totally
destructive. No major differences between PYTHIA and HERWIG

are seen if the angular order veto is applied.

So: if the MC does not include coherence correctly, approximate remedies
should be found that adjust the main observables
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kT-clusters
Given a set of n particles in an e+e− final state, reconstruct jets by pairing up
recursively pairs of particles with minimum

ykl = 2(1− cos θkl)min (Ek
2, El

2)/Q2.

The pair of particles with minimum ykl are combined into a single pseudo-par-
ticle, with momentum pkl = pk + pl (or any variant of this, like the P or E0

schemes). Notice:

y≈ pT
2

Q2
,

since

2(1− cos θ)≈ θ2, min (Ek, El)≈ EkEl

Ek + El
.

kT -cluster multiplicity can be computed at NLL level using the theory of mul-
tiple soft gluon emission (not possible for virtuality clusters)
In the following: how to reproduce the results of Catani, Dokshitzer, Olsson,
Turnock and Webber, 1991 using angular ordering
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kT-clusters multiplicity calculation: use angular ordering!
Sudakov form factor as in angular ordered shower, but veto radiation that
yields y > ymin. Introducing: Qmin = ymin

√
Q, t = θE, q = kT = t

√
z (1− z)

∆(Q)= exp

[

−
∫

0

Q2

dt

t

∫

dz
αs(q)

2π
P (z)θ(q − Qmin)

]

= exp

[

− 2

∫

dq

q
dz

αs(q)

2π
P (z)θ(q − Qmin)θ(Qz(1− z)− q)

]

.

For example, for Pqq (HOMEWORK PROBLEM!):

∆q(Q)= exp

[

−
∫

Qm in

Q

Γq(q, Q)dq

]

, Γq(q, Q) =
2CF

π

αs(q)

q

(

log
Q

q
− 3

4

)

For Pgg, Pgq: Γg(q, Q)=
2CF

π

αs(q)

q

(

log
Q

q
− 11

12

)

, Γf(q, Q)=
NF

3π

αs(q)

q

and ∆g(Q) = exp
[

−
∫

Qm in

Q
[Γg(q, Q)+ Γf(q, Q)]dq

]
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Thus, the 2-clusters multiplicity is:
σ2

σtot
= ∆q

2(Q).

3-clusters: The antiquark line gets a factor ∆q(Q) as before.

∆q(Q)

∆q(Q)/∆q(q̃ )

∆q(q̃ )

∆g(q
′)

Γq(q
′, Q)

θ′

θ

The gluon line from the gluon vertex gets
a factor ∆g(q

′), where q ′= θ ′Eg.
(This uses angular ordering! no gluon
radiation with angles > θ ′)
The quark line from the gluon vertex gets
a factor ∆q(q̃ ), where q̃ = θ ′Eq.
The quark line from the photon to the
gluon vertex gets a factor:

exp

[

−

∫

θ ′

θ dθ2

θ2

∫

dz
αs(q)

2π
P (z)θ(q − Qm in)

]

≈
∆q(Q)

∆q(Q̃)
(in the soft approximation!)

The gluon vertex gets a factor Γq(Q
′).

Thus, the 3-clusters multiplicity is 2∆q
2(Q)

∫

Qm in

Q
∆g(q ′)Γg(q ′, Q)dq ′
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Same (angular ordering) arguments lead to the following values for the 4-
cluster multiplicity diagrams:

Γq(q
′, Q)Γq(q

′′, Q)∆qq̄ gg, Γq(q
′, Q)Γq(q

′′, q ′)∆qq̄ gg,

with ∆qq̄ gg = ∆q
2(Q)∆g(q

′)∆g(q
′′).

The following observation holds to all orders: the Sudakov factors depend only
upon the nodal values of the kT scales q ′, q ′′, 	 at which branching occours,
and on the parton type.

The procedure works because, in an angular ordered shower, the starting evolu-
tion scale of a branched soft parton, Esoft θ, is equal to the kT .
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In CKKW: replace approximate Γ factors by exact matrix elements.

Detailed prescription:

• Consider the cross section dσn to produce n partons (n 6 N), all sepa-
rated by a minimum distance parameter ymin, computed with a fixed
value of αs. Generate n and n body kinematics with probability dσn.

• From the given kinematics reconstruct the scheleton, by pairing up
recursively partons with smallest y. Only pair up partons that can come
from the same splitting process (i.e. gg, qg, q q̄ ; no qq, q ′ q̄ , etc.).
Assign to each vertex i of the skeleton the corresponding qi = Q yi

√
.

• Associate factors ∆(qi)/∆(qj) (qi > qj) with each intermediate line of
the skeleton, a factor ∆(qi) with each final line of the skeleton, and
αs(qi)/αs(Q) with each node of the skeleton. Compute the product of
all this factors and accept the event with a probability equal to this pro-
duct.

Originally, N (and/or Qmin) was assumed to be large enough, so that the
result was insensitive to N (i.e., most events had less than N clusters)
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Interfacing to a Shower
At this level, we must complete the calculation with a full shower. The calcula-
tion was performed by extending the Shower approximation with exact matrix
elements, but only for splittings with kT above Qmin. In order to correctly
extend the shower, we should:

A) Avoid to generate splittings with kT > Qmin; those were already
generated by the matrix elements

B) Include all missing radiation with kT < Qmin

Step A) is achieved by introducing a θ(Qmin − kT) in the splitting vertices
and Sudakov form factors of the Shower Monte Carlo. In practice, this is
achieved by the veto algorithm:

→ At any stage of the generation of a branching starting from a scale t′ in
the SMC, generate the branching at a scale t′′ < t′ and generate the z

value with the usual method.

→ If kT = t
√

z(1 − z) > Qmin, discard the current branching, set t′ to the
value t′′, and go back to the previous step. Otherwise, continue.
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Step B) is more subtle: one should allow branchings from each intermediate
and final line of the skeleton that were not included in the ME calculation.
The angular ordered SMC should introduce, for any intermediate line initiating
at an angle θ ′ and ending at an angle θ ′′, radiation with θ ′ > θ > θ ′′, for any
kT . But only kT > Qmin was provided by the ME.
Thus, a truncated shower (P.N. 2004), with the angular ordered bound
θ ′ > θ > θ ′′, and a kT veto kT < Qmin (as before) should be provided for each
intermediate line.
For final state line, a standard vetoed shower (i.e. θ ′ > θ, unconstrained from
below), should be provided.
CKKW proposed an almost equivalent solution to this problem:
The final state particle are fed into an angular ordered Monte Carlo,
their initial showering angle is set equal to the angle at the vertex where
the parton was initially produced.
The vertex where the parton is initially produced is found by walking up from
the given final state parton in the shower skeleton, skipping vertices where the
parton in question is merged with a softer parton, and stopping at the first
vertex where this is not the case.
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θ1

θ2

θ3 θ4

final state parton

production vertex

harder parton

The CKKW prescription provides a single shower from θ1. The green line from
θ1 has basically constant energy, since radiation from 2, 3, 4 is soft. So, a
shower from θ1 to the minimum is like a shower from θ1 to θ2, plus a shower
from θ2 to θ3 plus a shower from θ4 to the minimum.
It is then obvious that the CKKW prescription is equivalent, from a kinematical
view point, to add a truncated shower to all internal skeleton lines.

HOWEVER: colour pattern wrong ...
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Comparison of colour connections for CKKW and truncated showers

Consider the emission of parton X with θ1 > θ > θ2.
Colour connection in CKKW:

X

1

2

3 4

5

colour connection with truncated shower:

X

1

2

3 4 5

X is close in colour to 4 and 5 in CKKW, to 1 and 3 with truncated showers:
Larger colour gaps with CKKW
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Consider e+e−→ q q̄ g.
Assume θ1 small. Consider gluon emission
with angle θ ≫ θ1, θ≪ θ2.
Coherence requires that the emission strength
is CF (gluon and quark coherently)

In HERWIG: initial angle for gluon radiation is θ1 or θ2 with a 50% probability.
Thus (in the above region) strength is CA/2≈CF (but only in the average!!)

In CKKW: radiation from gluon restricted to θ < θ1, quark radiates with angle
up to θ2. Thus only the quark radiates in the above region, with strength CF .
However, the colour connection is incorrect! Large colour gap ...

So: coherent showers are always needed when doing ME-Shower matching
with angular ordered showers.

49



CKKW with finite N

In the original CKKW scheme, N is assumed to be large enough
(i.e., almost negiglible amount of final states with N clusters).
Since N is practiccally finite, this means that Qmin should be kept
large enough.
A practical alternative to this (Mrenna and Richardson, 2003;
Schaelicke and Krauss, 2005) is the following:

In the matrix element for N clusters, replace the Qmin scale used
to compute the Sudakov form factors and the vetoed showers with Qn,
(the y

√
Q value of the smallest cluster.)

This was, the parton shower will be able to generate N + 1, N + 2, etc.
clusters with merging scales larger than Qmin, but the N hardest pairings
will be accurate at the matrix element level, while the subsequent ones
will be only collinear accurate.
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Notice: with this prescription Qmin can be chosen as low as one likes
(i.e., even near the shower cutoff). In this limiting case, no subsequent
showers will be generated by the Monte Carlo for events with less than
N clusters.
In all cases, the scale Qmin and N appear here as the delimiter between the
exact matrix element calculation and the shower approach: production of more
than N clusters will rely upon the SMC, as well as production of clusters
below Qmin.
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Summary of CKKW

• Provides smooth interface between ME and Shower

• Uses a separation scale Qmin, but is actually not strictly necessary

• Treats consistently multiple soft emissions in QCD, including interfer-
ence effects (i.e., it is fully consistent with angular ordering)

• Cancellation of Qmin dependence is demonstrated, provided the SMC
is of the angular ordered type (i.e. HERWIG like)

In practice, its use has been extended also to SMC of different kind (virtuality
ordered, dipoles with kT ordering, etc.)
If the SMC treats correctly coherence of multilpe soft gluon emission, it should
be possible to interface it into a CKKW scheme preserving this accuracy.
If not, only soft emissions above Qmin, and in number 6 N , will be correct
in the soft limit.

52



Variants
Several alternatives have been proposed:

• MLM matching (ALPGEN group)

• Pseudo showers (Mrenna and Richardson, 2003)

• CKKW-Lönnblad (Lönnblad, 2002)

mostly to avoid computing explicitly the Sudakov form factors;

It would be interesting to discuss in details the relation of these
methods with CKKW.

Many approaches introduce variants of the procedure to remedy to the prob-
lems created by the imperfect matching.
A critical comparison of the various methods is outside the scope of this lec-
ture ... However
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Comparison among different ME generators
(Alwall etal, Jul.07): compare Alpgen,Ariadne,Helac,MadEvent,Sherpa

W + n jets, jet ET spectra
TEVATRON LHC
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THE MESSAGE:
good agreement among different ME implementation, in spite of different
matching prescriptions (CKKW, MLM, and others)
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NLO Calculations
SMC with ME-corrections are only leading order accurate. Scale uncertainty

αs
n(2µ)≈αs

n(µ)(1− b0αs(µ)log(4))n≈αs(µ)(1−nαs(µ))

For µ = 100GeV, αs = 0.12;
uncertainty:

W + 1J W + 2J W + 3J

± 12% ± 24% ± 36%

This scale uncertainty can be considered as an estimate of the error due to
missing higher order terms

To improve on this, need to go to NLO

Positive experience with NLO calculations at LEP, HERA, Tevatron
(we TRUST perturbative QCD after LEP!).

Huge NLO effort for the computation of signals and backgrounds for LHC.
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LHC priority wish list, Les Houches 2005 (hep-ph/0604120)

process, V ∈ γ, W ±, Z background to As of now

pp→VV +1j tt̄H , BSM WW

pp→H + 2j *

pp→ tt̄ + bb̄ tt̄H New!

pp→ tt̄ + 2j tt̄H tt̄ + 1j (2007)

pp→VV + bb̄ VBF→VV , tt̄H , BSM *
pp→VV +2j VBF→VV *

pp→V + 3j BSM signatures New!
pp→VVV SUSY trilepton ZZZ, WWZ

pp→ bb̄bb̄ Higgs and BSM

Recent contributions:
W + 3 j: Ellis, Melnikov, Zanderighi 2009; Berger etal, 2009;
pp→ tt̄ + bb̄: Bredstein, Denner, Dittmaier, Pozzorini, 2009;
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Unlike tree level processes, research groups still focus upon specific processes;

However, very complex calculations (like W → 3 partons at NLO) are possible.

Special techniques to compute loop graphs are needed;

In particular, a technique by Ossola, Papadopoulos and Pittau (2007) leads to
hope that full automation of these calculations will become soon a reality,
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Keith Ellis, Madison 2009
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So: NLO calculations represent well the data;

But: NLO results are cumbersome and unfriendly: typically made up of an n-
body (Born+Virtual+Soft and Collinear remnants) and n + 1 body (real emis-
sion) terms, both divergent (finite only when summed up).

The same problems that we find with ME results are made worse when NLO
corrections are included.
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Simple example: Z production

“Real” contribution to q q̄ →Z + X :
(in fact, real + divergent part of virtual)

CF

Nc

gZ
2 gs

2

32π2

1

S

[

2(1+ y2)ξ2 +8(1− ξ)
]

{

1

2

(

1

ξ

)

+

[

(

1

1− y

)

+

+

(

1

1− y

)

−

]}

dξdydYZ

where

• YZ is the Z rapidity

• y = cos θ, θ being the emission angle of the gluon in the partonic CM

• ξ = 2k0/ s
√

in the partonic CM ( s= (p1 + p2)
2)

(

1

ξ

)

+

= lim
ǫ→0

[

1

ξ + ǫ
− log

1

ǫ
δ(ξ)

]

;

∫

0

1 (

1

ξ

)

+

= 0;

∫

−1

1 (

1

1± y

)

+

= 0,

Notice: pT
Z =

s
√

2
1− y2

√

ξ.
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Divergent contributions to the cross section for pT
Z > 0 (i.e. ξ > 0, 1 ± y > 0),

compensated by negative divergences (i.e. δ(ξ), δ(1 ± y) terms) at pT
Z = 0,

that arise from the virtual corrections.

pT
Z at NLO:

For small enough histogram
bins the first bin will always
turn negative!

A negative bin means: O(αs) corrections larger than Born term:
cannot trust perturbation theory!

One should carefully decide the appropriate bin size around the origin.
For more complex processes this becomes a requirement on jet parameters.
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To get a finite cross section we must define our Z cross section
allowing jets with pT < M . If M is too small, the cross section turns
negative!

Remember the lecture on ME: corrections like Born×
(

1−αslog
Q

M

)

For more complex processes, we need a jet parameter M , and a jet
definition. For example, we may build clusters recursively until the cluster
mass stays below M , and require pT > M for our jets.

M should be carefully chosen, as shown above.

64



So: NLO calculations represent well the data;
Can we MERGE NLO and Showers?
Some sort of resummation of the diverging virtual corrections should be carried
out, in order to get sensible results in the dangerous regions of collinear and
soft emissions.

The key to the solution: the dangerous region is well described by the
factorization formula. For example, for y→ 1 our cross section becomes

CF

Nc

gZ
2 gs

2

16π2

1

S

[

x2 +1

(1− x)+

]

dy

1− y
dξ dy dYW , withx = 1− ξ

The problem of diverging negative virtual corrections is dealt with and solved
in the Shower formalism.

In the following: assume that the hardest SMC radiation is the first one,
i.e. that the Shower is ordered in relative pT . We deal later with the subtle
issue on the choice of the ordering variable.
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Look back at the cross section for the first emission in a Shower Monte Carlo

dσ = dΦB B(ΦB)



 ∆tI,t0�
No rad iation

+
∑

(jk)

∆tI,t
αs(t)

2π
Pi,jk(z)

dt

t
dz

dφ

2π�
rad iation





• tI is the maximum hardness allowed initially, t0 is the minimum hardness of emission

• ∆tI,t is the no-radiation probability with hardness > t

∆i(tI , t)= exp



 −

∑

(jk)

∫

t

tI dt′

t′

∫

dz
αs(t′)

2π
Pi,jk(z)





Expand the Shower formula at order O(αs):

dσ = dΦB B(ΦB)









1−
∑

(jk)

∫

t0

tI dt′

t′

∫

dz
αs

2π
Pi,jk(z)�

virtual

+
∑

(jk)

αs

2π
Pi,jk(z)

dt

t
dz

dφ

2π�
rea l







As in the NLO calculation, we have a negative divergent contribution
for no radiation, and a positive divergent contribution for radiation.
The divergence cancels for inclusive cross sections.
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So: the SMC has his own approximate NLO virtual and real terms. To get
NLO accuracy these terms should be modified to yield the exact NLO.

Notice that SMC algorithms reconstruct from Born kinematics ΦB

and radiation variables t, z, φ, the full phase space Φ (momentum reshuffling)
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MC@NLO (2002, Frixione+Webber)

Add difference between exact NLO
and approximate (MC) NLO.

• Must use MC kinematics

• Difference should be regular
(if the MC is OK)

• Difference may be negative

Several collider processes already there:
Vector Bosons, Vector Bosons pairs,
Higgs, Single Top (also with W ),
Heavy Quarks, Higgs+W/Z.
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How it works (roughly)

The cross section for the hardest event in MC@NLO is

dσ = B̄
M C(ΦB)dΦB�

S event







∆t0
M C + ∆t

M C RM C(Φ)

B(ΦB)
dΦr

M C�
MC shower







+

[

R(Φ)−RM C(Φ)�
H event

]

dΦ

B̄
M C(ΦB)= B(ΦB) +







V (ΦB)�
infin ite

+

∫

RM C(Φ) dΦr
MC�

infin ite





�
finite

Imagine that soft and collinear
singularities in RMC are regulated
as in V .

The full phase space Φ is parametrized in terms of the Born phase space ΦB

and the radiation variables of the MC Φr
M C (typically z, t, φ), according to the

MC procedure (reshuffling) that yields Φ from ΦB and Φr
M C .

B : Born cross section; V : exact virtual cross section.
RMC : radiation cross section in the MC, typically: RMC = B

1

t

α

2π
P (z)

R : exact radiation cross section;
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We can check that the O(αs) expansion of dσ coincides with the exact NLO;

dσ = B̄
M C(ΦB)dΦB

[

∆t0

M C +∆t
M C RM C(Φ)

B(ΦB)
dΦr

M C

]

+ [R(Φ)−RM C(Φ)]dΦ

B̄
M C(ΦB) = B(ΦB)+

[

V (ΦB) +

∫

RM C(Φ) dΦr
MC

]

Expand:

dσ =

[

B + V +

∫

RM CdΦr
M C

]

dΦB

[

1−

∫

RM C

B
dΦr

M C +
RM C

B
dΦr

M C

]

+ [R −RM C ]dΦ

= [B + V ]dΦB + BdΦB

[ ∫

RM C

B
dΦr

M C −

∫

RM C

B
dΦr

M C +
RM C

B
dΦr

M C

]

+ [R −RM C ] dΦ

= [B + V ]dΦB + BdΦB

[

RM C

B
dΦr

M C

]

+ [R −RM C ] dΦ = [B + V ]dΦB + RdΦ
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Recipe for MC@NLO

• Compute totals for S and H events:

σS =

∫

|B̄M C

(ΦB)|dΦB, σH =

∫

|R−RM C |dΦ

• Chose an S or H event with probability proportional to σS, σH

• For an S event:

− generate Born kinematics with probability

|B̄M C(ΦB)|=

∣

∣

∣

∣

B(ΦB) +

[

V (ΦB) +

∫

RM C(Φ) dΦr
MC

]∣

∣

∣

∣

− Feed the Born kinematics to the MC for subsequent shower
with weight ± 1, same sign as B̄

M C

(ΦB).

• For an H event:

− generate Radiation kinematics with probability |R−RM C |.
− Feed to the MC (with weight ± 1, same sign asR−RM C)
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Issues:

• Must use of the MC kinematic mapping (ΦB , Φr
MC)⇒Φ.

• R−RM C must be non singular: the MC must reproduce exactly the
soft and collinear singularities of the radiation matrix element. (Many
MC are not accurate in the soft limit)

• The cancellation of divergences in the expression of B̄MC is taken care
of in the framework of the subtraction method (cancellation of diver-
gences under the integral sign) so that the integral in B̄MC becomes in
fact convergent.

• Negative weights in the output (not like standard MC’s).
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POWHEG

Positive Weight Hardest Emission Generator

Method to generate the hardest emission first, with NLO accuracy, and
independently of the SMC (P.N. 2004).

• SMC independent; no need of SMC expert; same calculation
can be interfaced to several SMC programs with no extra effort

• SMC inaccuracies in the soft region only affect next-to-hardest
emissions; no matching problems

• As the name says, it generates events with positive weight

73



How it works (roughly)

In words: works like a standard Shower MC for the hardest radiation, with
care to maintain higher accuracy.

In a standard MC, the hardest radiation cross section is

dσ = dΦB B(ΦB)



 ∆tI ,t0�
No radiation

+ ∆tI ,t
αs(t)

2π
Pi,jk(z)

dt

t
dz

dφ

2π�
radiation





• tI is the maximum hardness allowed initially

• ∆tI ,t in the no-radiation probability with hardness > t

SMC algorithm reconstructs from Born kinematics ΦB and radiation variables
t, z, φ, the full radiation phase space Φ (momentum reshuffling)
We say that ΦB is the underlying Born configuration of Φ according to
the mapping defined by the MC algorithm
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Steps to go NLO:

(ΦB, t, z, φ)⇔Φ � (ΦB, Φr)⇔Φ, dΦ = dΦB dΦr

B(ΦB) � B̄(ΦB)= B(ΦB)+





 V (ΦB)
�INFIN ITE

+

∫

R(ΦB, Φr) dΦr

�INFIN ITE




�
FINITE !

αs(t)

2π
Pi,jk(z)

dt

t
dz

dφ

2π
� R(ΦB, Φr)

B(ΦB)
dΦrad

POWHEG cross section:

dσ = dΦBB̄(ΦB)

[

∆t0
+∆t

R(Φ)

B(ΦB)
dΦr

]

, ∆t = exp







−

∫

θ(tr − t)
R(ΦB, Φr)

B(ΦB)
dΦr�

FIN ITE b ecause of θ function







with tr = kT(ΦB, Φr), the transverse momentum for the radiation.

In the collinear limit, kt
2 must be of the order of t.
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How does it work: dσ = dΦB B̄(ΦB)

[

∆t0 + ∆t
R(Φ)

B(ΦB)
dΦr

]

,

For small kT , the factorization theorem yields

R(Φ)

B(ΦB)
dΦrad ≈

αs(t)

2π
Pi,jk(z)

dt

t
dz

dφ

2π
and

B̄ ≈B × (1 +O(αs))

Thus: all features of SMC’s are preserved at small kT .
For large kT , ∆→ 1,

dσ = B̄ × R

B
≈R× (1 +O(αs)),

so large kt accuracy is preserved. Integrating in dΦr at fixed ΦB

∫

δ(ΦB − Φ̄B)dσ = B̄(Φ̄B)

So NLO accuracy is preserved for inclusive quantities.
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Example of mapping Φ⇔ (ΦB, Φr): Z pair production

ΦB variables: choose Mzz, Yzz and θ, where

• Mzz: invariant mass of the Z Z pair

• Yzz: rapidity of Z Z pair

• θ: go in the (longitudinally) boosted frame where Yzz = 0.
go to the Z Z rest frame with a transverse boost
In this frame θ is the angle of a Z to the longitudinal direction.

Φr variables:

• x = Mzz/s, (s is the invariant mass of the incoming parton system)
x→ 1 is the soft limit

• y: cosine of the angle of the radiated parton to the beam direction
in the partonic CM frame.

• φ: radiation azimuth.
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Few tricks
Both in MC@NLO and POWHEG, integrals of the form

B̄(ΦB) = B(ΦB) +

[

V (ΦB)
�INFIN ITE

+
∫

R(ΦB, Φr) dΦr

�INFINITE
]

�
FIN ITE !

are expressed within the subtraction method as

B̄(ΦB) = B(ΦB)+ VSV(ΦB) +

∫

dΦr [R(ΦB, Φr)−C(ΦB, Φr)]

Needs one Φr integrations for each Φ point!. To overcome this, we write

B̃(ΦB, Φr)=
B(ΦB) + V (ΦB)

∫

dΦr
+ R(ΦB, Φr)−C(ΦB, Φr) , B̄(ΦB)=

∫

B̃(ΦB, Φr)dΦr .

so that

B̄(ΦBΦ) =

∫

B̃(ΦBΦ, Φr)dΦr .

Use standard procedures (SPRING-BASES, Kawabata; MINT, P.N.)
to generate unweighted events for B̃(Φ̄, Φr)dΦrdΦ̄,
discard Φr (same as integrating over it!).
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Radiation in POWHEG: ∆(Φ
B
, pT) = exp

[

−

∫

R(ΦB, Φr)

B(ΦB)
θ(kT(Φ

B
, Φr)− pT)dΦr

]

,

Look for an upper bounding function;

R(ΦB, Φr)

B(ΦB)
≤U(Φ)= N

α(kT)

(1− x)(1− y2)

Generate x, y according to

exp

[

−
∫

U(ΦB)θ(kT(ΦB, Φr)− pT)dΦr

]

accept the event with a probability

R(ΦB, Φr)

B(ΦB)U(ΦB)
.

If the event is rejected generate a new one for smaller pT , and so on
(Veto method)
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POWHEG: Interfacing to SMC’s

For a pT ordered SMC, nothing else needs to be done.
Use the standard Les Houches Interface for User’s Processes (LHI):
put partonic event generated by POWHEG on the LHI;
Run the SMC in the LHI mode.
The LHI provides a facility to pass the pT of the event to the SMC (SCALUP).
As far as the hardest emission is concerned, POWHEG can reach:

• NLO accuracy of (integrated) shape variables

• Collinear, double-log, soft (large Nc) accuracy of the Sudakov FF.
(In fact, corrections that exponentiates are obviously OK)

As far as subsequent (less hard) emissions, the output has the accuracy of
the SMC one is using.
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Status of POWHEG
Up to now, the following processes have been implemented in POWHEG:

• hh→ZZ (Ridolfi, P.N., 2006)

• e+e−→ hadrons, (Latunde-Dada,Gieseke,Webber, 2006),
e+e−→ tt̄ , including top decays at NLO (Latunde-Dada,2008),

• hh→ QQ̄ (Frixione, Ridolfi, P.N., 2007)

• hh→Z/W (Alioli, Oleari, Re, P.N., 2008; )
(Hamilton,Richardson,Tully, 2008;)

• hh→H (gluon fusion) (Alioli, Oleari, Re, P.N., 2008; Herwig++)

• hh→H , hh→HZ/W (Hamilton,Richardson,Tully, 2009;)

• hh→ t + X (single top) NEW (Alioli, Oleari, Re, P.N., 2009)

• hh→Z + jet, Very preliminary (Alioli, Oleari, Re, P.N., 2009)

• The POWHEG BOX, Very preliminary, (Alioli, Oleari, Re, P.N., 2009)
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In practice

MC@NLO: Code and manuals at

http://www.hep.phy.cam.ac.uk/theory/webber/MCatNLO/

1 program for all processes

POWHEG: Codes and manuals in

http://moby.mib.infn.it/~nason/POWHEG

Examples are provide to link POWHEG to HERWIG or PYTHIA,

or to generate a Les Houches Event File to be fed

later to a SMC for showering.

1 program for each process

In the HERWIG++ code there are few independent implementations of MC@NLO
and POWHEG processes
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Examples: Z production
HERWIG alone fails ar large pT ;
NLO alone fails at small pT ;
MC@NLO and POWHEG work
in both regions;
Notice:
HERWIG with ME corrections
or any ME program, give the
same NLO shape at large pT

However: Normalization around
small pT region is incorrect
(i.e. only LO).

The essence of the improvement with respect to standard shower and ME
matched programs is summarized in this plot.
Be careful with the misleading language: Z at LO O(1), NLO O(αs);
At O(1) there is no Z transverse momentum. Thus, the pT distribution pT > 0
is of O(αs), i.e. has leading order accuracy!
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NLO+PS compared with ME programs: ALPGEN and MC@NLO in tt̄ production

expect:
• Disadvantage: worse normalization (no NLO)

• Advantage: better high jet multiplicities (exact ME)

(Mangano, Moretti,Piccinini,Treccani, Nov.06)

ALPGEN:
K = 1.51

MC@NLO:
generated
by shower
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PYTHIA ME vs. POWHEG

For 2→ 1 processes (W/Z and Higgs production), PYTHIA ME corrections

are very similar to POWHEG; it implements the formula

dσ = dΦB B(ΦB)�
B̄ in POWHEG

[

∆t0
+∆t

R(Φ)

B(ΦB)
dΦr

]

, ∆t = exp

[

−

∫

θ(tr − t)
R(ΦB, Φr)

B(ΦB)
dΦr

]

Dashes: PYTHIA X 1.172, Solid: POWHEG
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Different shape in yZ distribution understood as NLO effect
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Comparisons of POWHEG+HERWIG vs. MC@NLO
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Z pair production
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Remarkable agreement for most quantities;
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POWHEG and MC@NLO comparison:
Top pair production

Good agreement for all observable considered
(differences can be ascribed to different treatment of higher order terms)
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Bottom pair production

• Very good agreement For large scales (ZZ, tt̄ production)

• Differences at small scales (bb̄ at the Tevatron)

• POWHEG more reliable in extreme cases like bb̄ , cc̄ at LHC

(yields positive results, MC@NLO has problems with negative weights)
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Z production: POWHEG+HERWIG vs. MC@NLO

Small differences in high and low pT region
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In some instances we do find differences!

Theese have been studied and understood in great details.

They can be attributed to subleading NNLO effects (i.e. beyond the declared
accuracy of the methods.)
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Z production: rapidity of hardest jet (TEVATRON)

POWHEG+HERWIG

MC@NLO

POWHEG+PYTHIA

PYTHIA
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Dip in central region in MC@NLO also in tt̄ and ZZ

POWHEG+HERWIG

MC@NLO

POWHEG+HERWIG

MC@NLO
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ALPGEN and tt̄ + jet at NLO vs. MC@NLO

yjet

43210−1−2−3−4

2.0

1.5

1.0

0.5

K = NLO/LO

yjet

43210−1−2−3−4

2.0

1.5

1.0

0.5

NLO

LO

√
s = 1.96TeV

pp̄ → tt̄ + jet + X

(

dσ
dyjet

)

[fb]

43210−1−2−3−4

1000

100

10

1

POWHEG distribution as in ALPGEN (Mangano,Moretti,Piccinini,Treccani,Nov.06)
and in tt̄ + jet at NLO (Dittmaier, Uwer, Weinzierl) : no dip present.
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Higgs boson via gluon fusion at LHC
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Higgs boson via gluon fusion at LHC
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POWHEG vs. NNLO vs. NNLL

dσ = B̄(ΦB)dΦB

{

∆(ΦB, pT
m in) + ∆(ΦB, pT )

R(ΦB, Φr)

B(ΦB)
dΦr

}

≈
B̄(ΦB)

B(ΦB)
R(ΦB, Φr)dΦr = {1+O(αs)}R(Φ)dΦ

Better agreement with NNLO this way.
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Jet rapidity in h production

Dip in MC@NLO inerithed from even deeper dip in HERWIG

(MC@NLO tries to fill dead regions in HERWIG, a mismatch remains).

102



Gets worse for larger ET cuts:

Questions:

Why MC@NLO has a dip in the hardest jet rapidity?

Why POWHEG has no dip? Is that because of the hardest pT spectrum?
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Hard pT spectrum in POWHEG
We understand the cause; we keep it because yields results closer to NNLO;
There is enough flexibility to get rid of it, if one wants!
Go back to the POWHEG cross section:

dσ = B̄(ΦB)

[

∆t0
+ ∆t

R(Φ)

B(ΦB)
dΦr

]

, ∆t = exp

[

−

∫

θ(tr − t)
R(ΦB, Φr)

B(ΦB)
dΦr

]

Break R = Rs + Rf, with Rf finite in collinear and soft limit, define

dσ ′ = B̄
s
(ΦB)

[

∆t0

s + ∆t
s Rs(Φ)

B(ΦB)
dΦr

]

+ Rf(Φ)dΦ

with:

∆t
s = exp

[

−

∫

θ(tr − t)
Rs(ΦB, Φr)

B(ΦB)
dΦr

]

.

Easy to prove that: dσ ′ is equivalent to dσ.
In other words, the part of the real cross section that is treated with the
Shower technique can be varied.
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Rs = R
h2

kT
2 + h2

Rf = R
kT

2

kT
2 + h2

Agrees with NLO
at high pT .
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No new features (dips and the like) arise in the other distributions:

So: high kT cross section and dips are unrelated issues.
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Why is there a dip in MC@NLO?

Write the MC@NLO hardest jet cross section in the POWHEG language;
Hardest emission (P.N., 2004) can be written as

dσ = B̄
HW (ΦB)dΦB�

S event







∆t0
HW + ∆t

HW RHW (Φ)

B(ΦB)
dΦr

HW�
HERW IG shower







+

[

R(Φ)−RHW (Φ)�
H event

]

dΦ

B̄
HW (ΦB) = B(ΦB)+







V (ΦB)�
infinite

+

∫

RHW (ΦB, Φr) dΦr�
infin ite





�
fin ite

(Imagine that soft and collinear singularities in RHW are regulated as in V !).
Like POWHEG with Rs = RHW . But now Rf = R−RHW can be negative.
This formula illustrates why MC@NLO and POWHEG are equivalent at NLO.
But differences can arise at NNLO ...
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For large kT :

dσ =

[

B̄HW(ΦB)

B(ΦB)
RHW(Φ)+ R(Φ)−RHW(Φ)

]

dΦB dΦr
HW

= R(Φ)dΦ�
no dip

+

(

B̄HW(ΦB)

B(ΦB)
− 1

)�
O(αs), but large for Higgs

RHW(Φ)�
Pure Herwig dip

dΦ

So: a contribution with a dip is added to the exact NLO result;

The contribution is O(αsR), i.e. NNLO!

Can we test this hypothesis? Replace B̄HW(Φn)⇒B(Φn) in MC@NLO!

the dip should disappear ...
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MC@NLO with BHWreplaced by B

No visible dip is present! (on the right track, more studies needed cd Does...)
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Towards automation: the POWHEG BOX

The MIB (Milano-Bicocca) group (Alioli, Oleari, Re, P.N.) is working on
an automatic implementation of POWHEG for generic NLO processes.

This framework is being tested in the process hh→Z + 1jet.
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The POWHEG BOX

Build a computer code framework, such that, given the Born cross section, the
finite part of the virtual corrections, and the real graph cross section, one
builds immediately a POWHEG generator. More precisely, the user must supply:

• The Born phase space

• The lists of Born and Real processes (i.e. u s̄→W+c c̄, etc.)

• The Born squared amplitudes B = |M|2, Bij , Bj,µj,µj
′, for all rele-

vant partonic processes; Bij is the colour ordered Born amplitude
squared, Bj,µν is the spin correlated amplitude, where j runs over all
external gluons in the amplitude. All these amplitudes are common
ingredient of an NLO calculation.

• The Real squared amplitude, for all relevant partonic processes. This
may also be obtained by interfacing the program to MADGRAPH.

• The finite part of the virtual amplitude contribution, for all relevant par-
tonic processes.
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Strategy
Use the FKS framework according to the general formulation of POWHEG given
in (Frixione, Oleari, P.N. 2007), hiding all FKS implementation details.
In other words, we use FKS, but the user needs not to understand it.
(Attempts to use the popular Catani-Seymour method
have turned out to be too cumbersome).
It includes:

• The phase space for ISR and FSR, according to FNO2006.

• The combinatorics, the calculation of all Rα, the soft and coll. limits

• The calculation of B̃

• The calculation of the upper bounds for the generation of radiation

• The generation of radiation

• Writing the event to the Les Houches interface

It works! Lots of testing needed now ...
Byproduct: generic NLO implementation using the FKS method
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Case study: Z + jet production
Get virtual matrix elements from MCFM;
Compare first NLO predictions obtained with MCFM and the POWHEG BOX

Virtual corrections are the same, but subtraction terms, soft and collinear
remnants are all different; non trivial test of setup;
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Everything seems to work ...
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Now compare POWHEG+HERWIG with NLO (red)
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Distributions sensitive to more than
two jet show noticeably different.
All others in agreement with NLO
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Conclusions

• New developments in the calculation and simulation of signal and
background events at the LHC

• ME element programs, interfaced to Parton Shower algorithms with
CKKW-like methods replace plain Parton Shower simulations.

• NLO calculations for very complex processes are becoming available

• Techniques to merge NLO calculations and showers do exist, and are
being used by the experimental collaborations.
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